If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-4x=0
a = 18; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·18·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*18}=\frac{8}{36} =2/9 $
| 2x=5x+1|7+3x-5|2 | | 6-y/5=15 | | x=5(x+5)(6-x) | | y=7.5÷0.5 | | 15/(0.8x)-15/x=12 | | 7x+10=21 | | X²+x-306=0 | | 2x-79=3x-90 | | 7+4r-2=10+ | | 75+x=86 | | 2^x(x)+5x=1/64 | | x=2x+43×(x−2x)+169 | | 4^(-2x+1)=64 | | 4z+1=6z-3z= | | M=m-3 | | Y=15a+13 | | X2+28x+127=0 | | X2-28x+127=0 | | 5a+7=–2a+105 | | 6m5÷2/3m4= | | -15x-5=0 | | -x/3=x/2-4/31/6 | | 7y+8=15 | | x^-85x+1806=0 | | 0.5x0.12=x | | 10^(x+3)=6^2x | | 5-3x=8x-6 | | 5x+6-2x=3x+7 | | 2x²+16x-96=0 | | 2x+7(-7+2x)=31 | | 16+n10=24 | | 2-(3x-23)=7(x-2) |